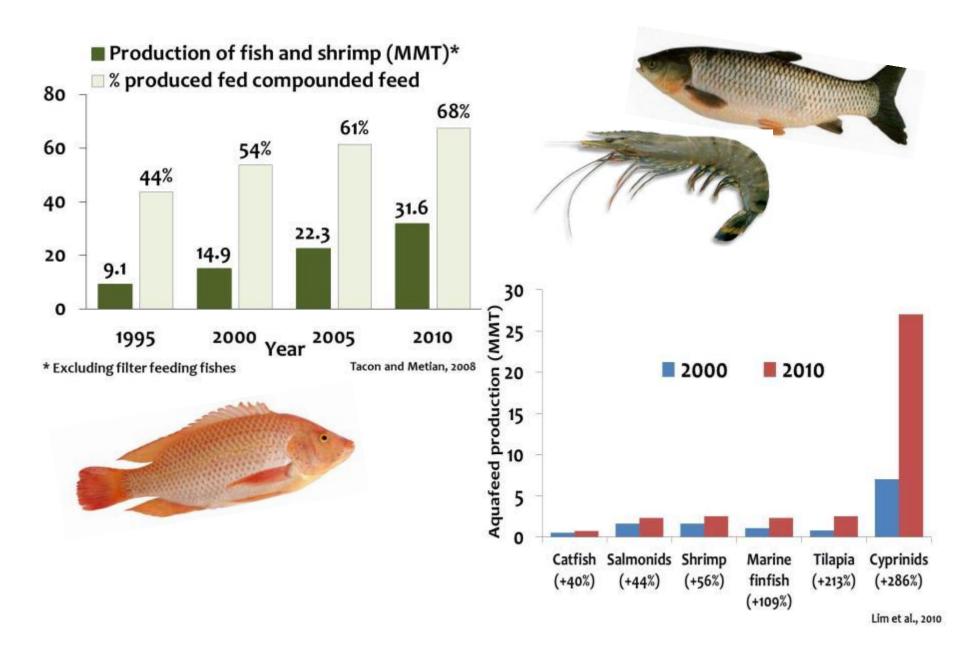
The Nutritive Value of Processed Animal Proteins to Different Aquaculture Species

EFPRA 2013 Prague

Dominique P. Bureau


Fish Nutrition Research Lab

Dept. Animal and Poultry Science Ontario Ministry of University of Guelph Natural Resources

AQUACULTURE = Diversity of Species

AQUACULTURE FEED = a growing industry

Trout Farm (Raceway) – a Typical Fish Farm???

Shrimp Farming Area in Java (Indonesia)

Cage Production of Tilapia in South America (Brazil, Columbia)

Top <u>fed</u> aquaculture & livestock producers – 2009

(FAO – FISHSTAT/FAOSTAT, 2011)

Values in million tonnes - Mt

Top fed aquaculture	species	Top fed livestock species			
Grass carp	4.16 Mt	Pig	106.3 Mt		
Common carp	3.22	Chicken	80.3		
Nile tilapia	<u>2.54</u>	Cattle	62.8		
Catla	2.42	Sheep	8.2		
Whiteleg shrimp	2.32	Turkey	5.3		
Crucian carp	2.06	Goat	5.0		
Atlantic salmon	1.44	Duck	3.8		
Roho labeo	1.22	Buffalo	3.3		
Pangasius catfish	1.19	∑ 97%	∑ 97%		
\sum 66% of total fed species production					
Total fed species production : 31.4 Mt		Total meat produc	ction - 284 Mt		
APR 8.5% since 1980		APR 2.55% since	APR 2.55% since 1980		

Slide courtesy of Dr. A.J. Tacon

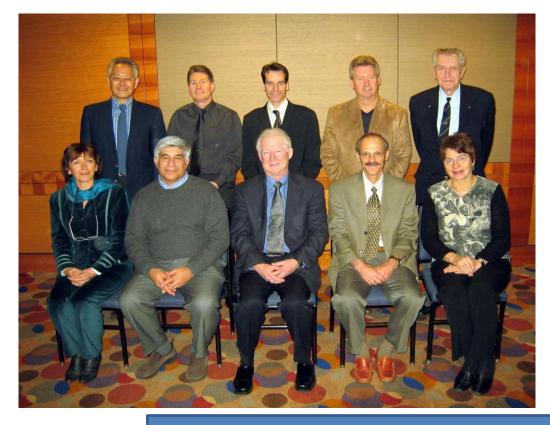
What Do Fish and Shrimp Require?

Traditional Essential Nutrients:

Same for all species:

10 Essential amino acids Fat and water soluble vitamins Minerals Same nutrients as other livestock species but with some differences

Nutrients with some aspects of essentiality that are species and life stage-specific:


Essential fatty acids ω -3, ω -6 Vitamin-like compounds (choline, *myo*-inositol)

Nutrients who essentiality are species and stage-

specific:

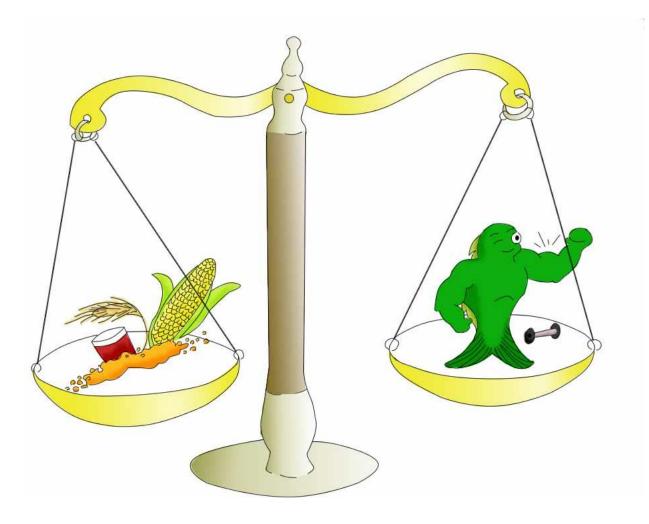
Taurine Phospholipids (a very wide class of chemicals) Cholesterol ? Nucleotides ? Other compounds?

NRC Committee of Nutrient Requirements of Fish and Shrimp (2009-2011)

NRC 2011

Review of state-of-the-art

Committee reviewed 1000s of papers


Imperfect document and recommendations represent best effort

PERIOD CONTRIBUTION CONTRIBUTICO CONTRIBUTIC

LNIMAL MUTELTION SERIES

SUBCESS EALERANDING COUNTS

Animal Nutrition = Balanced Understanding of Nutritional Requirements and Ingredient Quality

Animals utilize NUTRIENTS, not ingredients!

What matters is meeting individual nutrient requirements of the animal

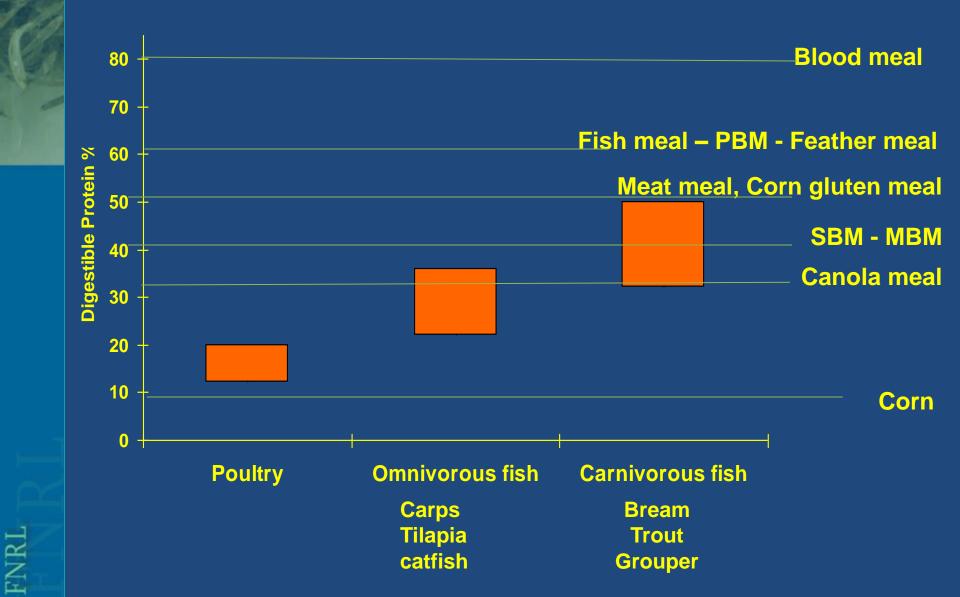
Dependent on:

Chemical/nutrient composition of the ingredients Digestibility / bio-availability of nutrients in ingredients

The Roles and Value of Processed Animal Proteins

Comparison of the Cost of Different Protein Sources

Feedstuffs	Crude Protein %	Price* USD \$/tonne	Apparent Digestibility of Protein** %	Price \$/tonne Crude Protein	Price \$/tonne Digestible protein
Fish meal	65	1700	90	2,615	2,906
Rapeseed (Canola) meal	38	400	87	1,053	1,210
Corn Gluten meal	60	600	93	1,000	1,075
Soybean meal, 48% USA	48	550	89	1,146	1,287
DDGS, USA	35	280	80	800	1,000
Poultry by-products meal, USA	57	530	87	930	1,069
Meat and bone meal, USA	50	460	85	920	1,082
Feather meal, USA	80	630	75	788	1,050


* Source:

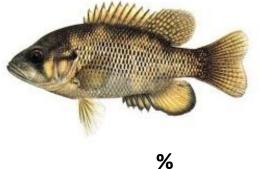
Hammersmith Marketing Ltd - Grain Trading WEEKLY FEED GRAIN AND PROTEIN REPORT May 18, 2013

** Practical estimates of digestibility of crude protein

Digestible Protein Concentration: Species, Feeds and Ingredients

Processed Animal Proteins (PAPs) Perspectives from Asia and the Americas

Aquaculture feed are increasingly formulated on a "nutrient" basis (as opposed to an ingredient or proximate composition basis)


Processed animal protein ingredients are generally cost-effective and increasingly "<u>trusted</u>" and "<u>digestible</u>" sources of several keys nutrients:

Essential amino acids Phosphorus Essential fatty acids Micro-minerals Phospholipids Cholesterol, etc.

They are playing an increasingly strategic role, notably in the context of very high fish meal price

Example of Formulation for Commercial Extruded Feed (32% CP) for Nile Tilapia in South East Asia

Global production : > 2.5 MMT

2


Ingredients

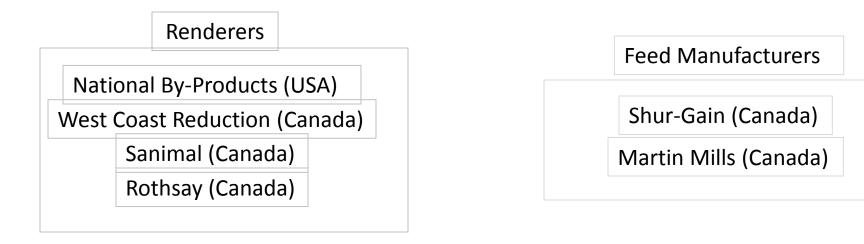
Grains & tubers (corn, wheat, cassava, rice) + milling by-products (bran)	40
Soybean meal	35
Processed animal proteins (poultry meal, MBM, feather meal, blood meal)	12
Functional ingredients	5
Fish meal, local or imported	3
Soybean oil, lecithin, palm oil	2
Fish oil	1

Minerals, vitamins, amino acids and additives

Example of Formulation for Commercial Feed (36% CP) for Crucian Carp (*Carassius auratus gibelio*) in China

Global production : > 2 MMT

Ingredients


Grains & tubers (corn, wheat, cassava, rice) + milling by-products (bran)	25
Rapeseed meal	23
Soybean meal	19
Processed animal proteins (poultry meal, MBM, feather meal, etc.)	15
Cottonseed meal	8
Fish meal	4
Soybean oil and other fat sources	3
Minerals, vitamins, additives	3

Essential Amino Acid Composition of some Processed Animal Proteins

Ingredients	ARG	HIS	ILE	LEU	LYS	MET	PHE	THR	VAL	TRP
					%]	DM				
Fish meal, herring	4.8	1.5	2.6	4.7	3.9	1.4	2.7	2.7	3.3	1.1
Meat and bone meal	3.4	1.1	1.5	3.2	2.5	0.9	1.8	1.9	2.1	0.4
Poultry by-prod. meal, low ash	5.1	1.6	2.4	5.1	4.3	1.6	2.9	3.1	3.2	0.7
Poultry by-prod. meal, high ash	5.0	1.5	2.4	4.9	4.2	1.5	2.7	2.9	3.2	0.7
Hydrolyzed feather meal	6.4	0.7	4.3	7.2	2.7	0.6	4.3	4.2	6.5	0.6
Spray-dried blood meal	3.6	6.7	0.3	11.5	7.0	0.8	6.1	2.8	6.6	1.3
Porcine meat meal	5.2	1.3	2.4	4.2	3.8	1.2	2.4	2.3	3.0	0.4 ^b

Characterizing the Nutritive Value of Processed Animal Proteins

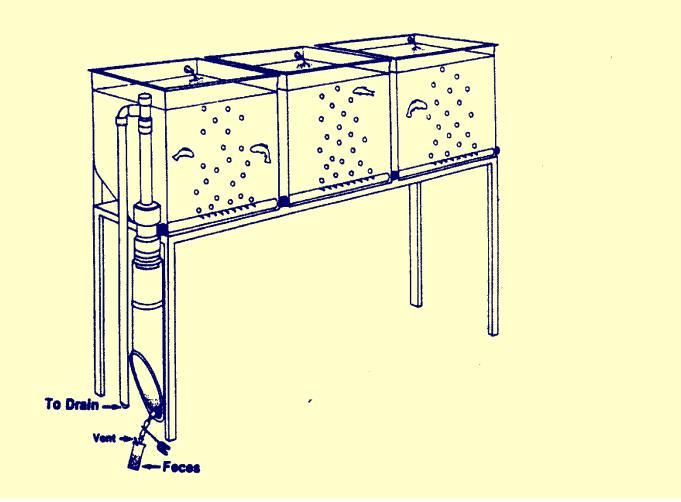
Informal Research Partnership (1994-2004)

UG Fish Nutrition Research Laboratory

Funding

Fats and Proteins Research Foundation (USA)

Ontario Ministry of Agriculture (OMAF) (Canada)


Canadian Renderers Association (Canada)

Dept. of Fisheries and Oceans (DFO) (Canada)

Ontario Ministry of Natural Resources (OMNR) (Canada)

National Renderers Association (USA)

The Guelph System (Cho et al., 1982)

Guelph Digestibility System

	Apparent Digestibility Coefficients (%)					
Ingredients	DM	ĊP	GE			
Trial #1						
Feather meal 1	82	81	80			
Feather meal 2	80	81	78			
Feather meal 3	79	81	76			
Feather meal 4	84	87	80			
Meat and bone meal 1	61	83	68			
Meat and bone meal 2	72	87	73			
Trial #2						
Meat and bone meal 3	72	88	82			
Meat and bone meal 4	66	87	76			
Meat and bone meal 5	70	88	82			
Meat and bone meal 6	70	89	83			
Trial #3						
Feather meal 5	86	88	84			
Feather meal 6	83	86	81			
Feather meal 7	83	88	83			
Meat and bone meal 7	78	92	86			
Meat and bone meal 8	72	89	81			
Meat and bone meal 9	69	88	80			

Apparent Digestibility of Processed Animal Proteins in the late 1990s

Apparent Digestibility of Feather Meals

	AI	C	_
Guelph System	Protein	Energy	
Cho et al. (1982)	58%	70%	
Sugiura et al. (1998)	82-84%	N/A	
– Bureau (1999)	81-87%	76-80%	
Stripping	HCI hydrolyzed fe	eather meal	
Pfeffer et al. (1995)	83%	81%	

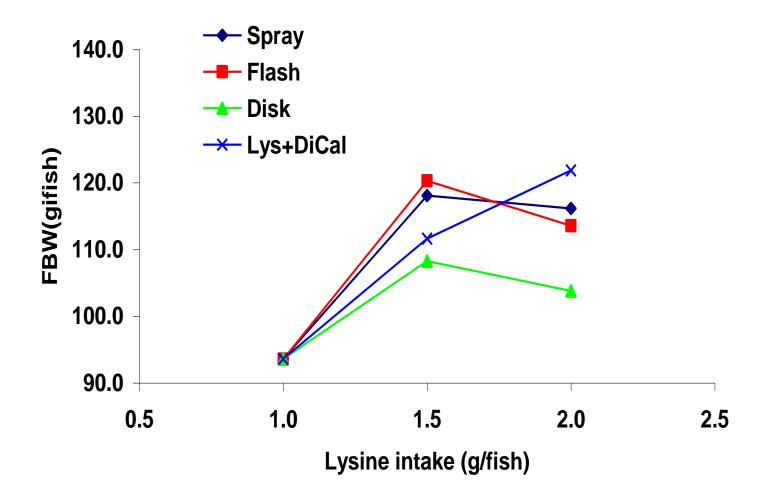
Data obtained using the same facilities and methodology. There is value in using standard methodological approaches consistently over many years.

Apparent Digestibility of Poultry By-Products Meal

	ADC				
Guelph System	Protein	Energy			
- Cho et al. (1982)	68%	71%			
Hajen et al. (1993)	74-85%	65-72%			
Sugiura et al. (1998)	96%	N/A			
— Bureau et al. (1999)	87-91%	77-92%			

Data obtained using the same facilities and methodology

Blood Meal

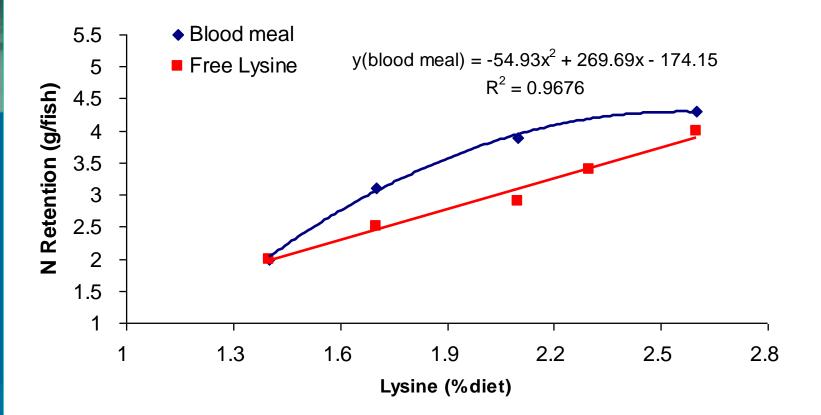

FNRL

	AD	С
Guelph System	Protein	Energy
Spray-dried blood meal	96-99%	92-99%
Ring-dried blood meal	85-88%	86-88%
Steam-tube dried blood meal	84%	79%
Rotoplate dried blood meal	82%	82%

Bureau et al. (1999)

Different drying equipments can greatly affect apparent digestibility

Final Body Weight - Lysine Bio-Availability Trial



Shows that differences exist in the bioavailability of lysine in blood meals produced with different drying equipment

FNRL

El Haroun and Bureau (2006)

N gain of rainbow trout fed lysine deficient basal diet supplemented with free L-Lysine or spray-dried blood meal (two sources of "highly digestible" lysine).

Digestible lysine from high quality blood meal is apparently of slightly higher bioavailability (bio-efficacy) than crystalline L-Lysine

Nutrient Composition of Different Fish Meals and Poultry by-Products Meals

	Fish	Fish meal		oy-Produc [®]	ts Meal
Composition	Herring	Menhaden	Feed-grade	Prime	Refined
					~-
Dry matter, %	93	91	97	96	97
Crude Protein, %	71	61	62	66	70
Crude fat, %	9	9	11	8	10
Ash, %	12	22	15	15	11
Phosphorus, %	2.4	3.1	2.6	2.8	2.0
Lysine, %	5.4	4.2	3.7	3.7	4.6
Methionine, %	1.8	1.5	1.2	1.3	1.5
Histidine, %	2.2	1.2	1.4	1.2	1.5
Threonine, %	3.1	2.4	2.5	2.4	3.0

Fish meal is not fish meal and poultry by-products meal is not poultry by-products meal. These are generic names that regroup ingredients that can be widely different.

Apparent Digestibility of Nutrients of Different Fish Meals and Poultry By-Products Meals

Fish	meal	Poultry	Poultry by-Produc		
Herring	Menhaden	Feed-grade	Prime	Refined	
	%	,)			
81	71	71	72	75	
90	86	83	85	87	
92	91	80	83	80	
58	47	49	46	56	
95	95	89	92	93	
95	95	92	95	94	
92	93	85	89	89	
90	92	82	85	85	
	Herring 81 90 92 58 95 95 95 92	81 71 90 86 92 91 58 47 95 95 95 95 92 93	HerringMenhadenFeed-grade817171908683929180584749959589959592929385	HerringMenhadenFeed-gradePrime $\%$ $\%$ $\%$ $\%$ 81 71 71 72 908683859291808358 47 49 46 9595899292938589	

Digestibility of essential amino acids of poultry by-products meal is high but slightly less good than that of high quality fish meal (e.g. herring meal in this example)

FNRL

Cheng and Hardy (2002)

From the Laboratory to the Field...

FNRL

Commercial Extruded Feeds Based on Herring Meal, Menhaden Meal or Poultry by-Products Meal

	1	2	3	4	5	6
Ingredients	MM10	MM20	HM10	HM20	NFM	Profishent
Fish meal, herring	-	-	100	200	-	+
Fish meal, menhaden	100	200	-	-	-	-
Poultry by-prod. meal	300	200	300	200	400	+
Soybean meal	90	80	120	120	70	+
Corn gluten meal	150	150	120	90	150	+
Feather meal	50	70	50	70	70	+
Wheat	100	100	110	130	100	+
Fish oil, herring	120	110	120	110	130	+
Poultry Fat	60	60	60	60	50	+

FNRL

Unit: kg/tonne of feed

Growth and Feed Efficiency of Rainbow Trout Fed the Commercial Extruded Feeds for 16 weeks at 15°C.

MM10	(g/fish)	(g/fish)	(g/fish)	(g/fish)	(gain/feed	$\langle 0 \rangle$
MM10					intake)	(%)
	15.5	205	189.2	180.1	1.05 ^b	0.199
MM20	15.5	193	177.3	158.4	1.12^{ab}	0.192
HM10	15.4	203	187.5	161.0	1.16^{ab}	0.199
HM20	15.8	222	206.4	171.7	1.20^{a}	0.208
— NFM	16.0	208	192.1	182.2	1.06^{b}	0.199
Profishent	15.9	203	187.5	165.3	1.13 ^{ab}	0.197
SEM		6.2	6,2	5.2	0.03	0.03

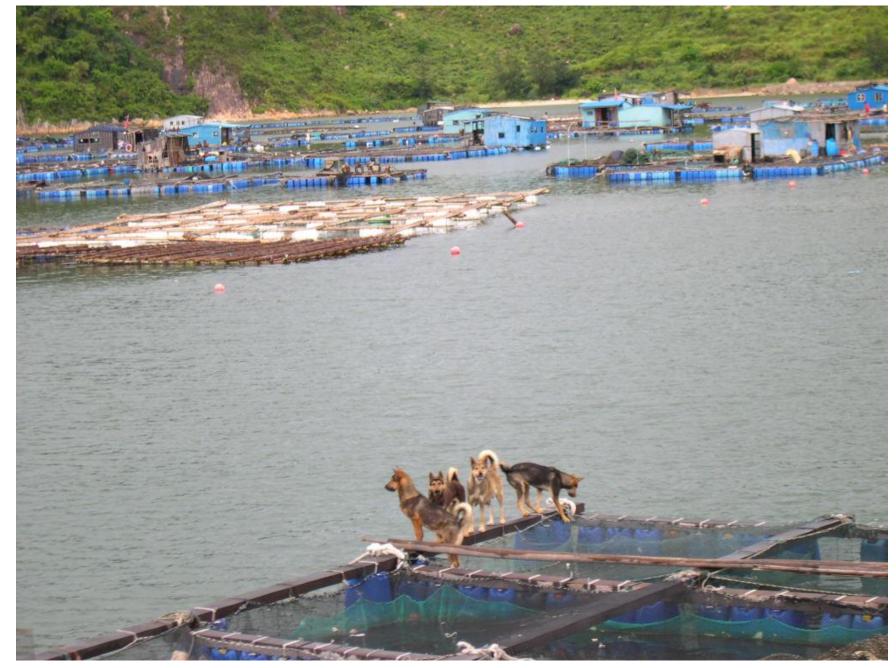
No fish meal, main protein source = poultry by-products meal (40%)

Differences in <u>Processing</u> of the ingredients play a far greater role than difference in <u>species</u> to which the ingredients are fed

Processed Animal Proteins in the Diet of High Value Marine Fish Species:

> Research Trials by Prof. Wang Yan Zhejiang University, P.R. China

Trials funded by Fats and Proteins Research Foundation (FPRF) and National Renderers Association (NRA) - Asia Region


Marine Fish Cage Farm on Nanao Island, Guangdong, China

Let's not waste time in the lab. Let's go directly to the field

Bought a floating farm and raised fish alongside commercial fish farmers

Marine Fish Cage Farm, Guangdong, China

First Experiment (2002)

Cuneate drum

Trash fish (what farmers were using)

Lab-made extruded dry feed Formulated to different protein to digestible energy levels

Local farmers' perception

Effects of dietary protein and energy levels on growth, feed utilization and body composition of cuneate drum (*Nibea miichthioides*)

Feeds L1L2L3 M1M2 M3 H1H2 H3 RF Feed formulations Herring meal 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 Rapeseed meal 9.0 11.0 15.0 9.0 15.0 9.5 9.5 10.010.0Blood meal 3.5 4.05.04.5 4.5 7.0 6.5 9.0 9.5 Trash 8.0 11.0 Sovbean meal 9.0 9.0 11.011.010.09.0 10.0fish Poultry by product meal 11.0 11.0 11.0 11.011.011.011.0 11.011.0Wheat flour 29.5 20.011.023.5 11.5 9.0 18.5 17.08.0 CaHPO₄ 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 DL-methionine 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Fish oil 5.012.0 20.05.0 13.0 19.0 5.010.518.0 Vitamin premix^a 1.01.01.01.01.01.01.01.01.0Mineral premix^b 1.01.01.01.01.01.01.01.01.0

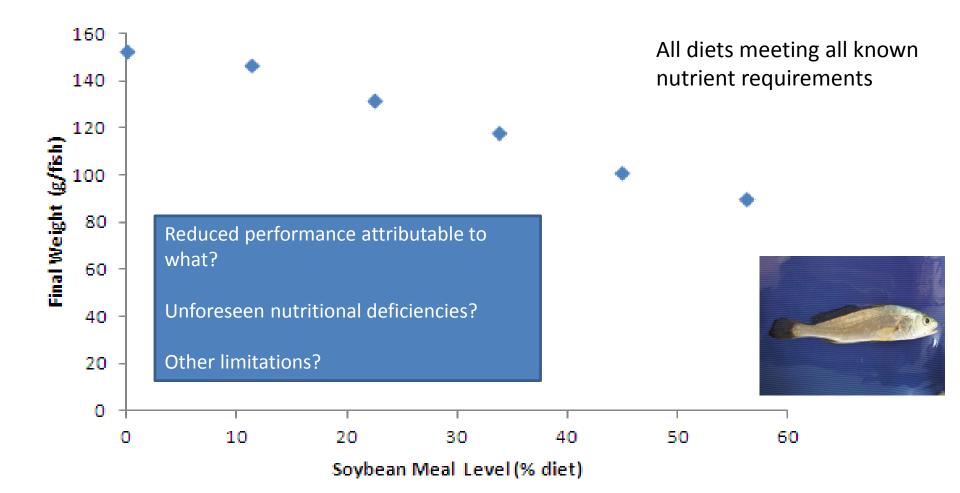
Table 1 Formulation (%), chemical composition (%) and energy content (MJ kg⁻¹) of the test feeds

Effects of dietary protein and energy levels on growth, feed utilization and body composition of cuneate drum (*Nibea miichthioides*)

Table 4

*

Final body weight (g fish⁻¹), specific growth rate (% day⁻¹), feed intake (% day⁻¹) and feed conversion ratio of cuneate drum in the experiment (Mean \pm S.E., n=3)


Feeds	Final body weight	Specific growth rate	Feed intake	Feed conversion ratio
L1	92.4 ± 3.3^{bc}	2.86 ± 0.06^{bcd}	2.9 ± 0.1^{a}	$1.24 \pm 0.05^{\rm ac}$
L2	$99.2 \pm 1.5^{\rm ac}$	2.99 ± 0.05^{ad}	2.7 ± 0.1^{ab}	1.11 ± 0.03^{bc}
L3	81.1 ± 3.9^{b}	2.60 ± 0.07^{b}	2.8 ± 0.1^{ab}	1.38 ± 0.08^{a}
M1	99.7 ± 2.5^{ac}	2.88 ± 0.05^{cd}	2.9 ± 0.1^{a}	$1.25 \pm 0.03^{\rm ac}$
M2	$102.0 \pm 4.0^{\rm ac}$	2.98 ± 0.01^{ad}	2.8 ± 0.1^{ab}	1.16 ± 0.05^{abc}
M3	89.6 ± 6.4^{bc}	2.69 ± 0.08^{bc}	2.6 ± 0.2^{ab}	1.14 ± 0.09^{abc}
H1	$103.7 \pm 1.2^{\rm ac}$	3.02 ± 0.05^{ad}	2.7 ± 0.0^{ab}	1.13 ± 0.06^{abc}
H2	115.8 ± 0.6^{a}	3.24 ± 0.02^{a}	2.5 ± 0.0^{b}	0.95 ± 0.02^{b} *
H3	$104.9 \pm 4.9^{\rm ac}$	3.06 ± 0.07^{ad}	2.3 ± 0.0^{b}	0.92 ± 0.01^{b}
RF	111.7 ± 2.9	3.18 ± 0.04	2.7 ± 0.1	1.05 ± 0.03

The superscripts present results of Tukey HSD test among fish fed the formulated feeds or Student's *t*-test between fish fed the raw fish (RF) and feed containing 40% DP and 16 MJ kg⁻¹ DE (H2). The values within the same column with different superscripts are significantly different at P < 0.05.

Take Home Message:

A feed with 45% protein and 15% fat formulated with 30% fish meal, 11% poultry byproducts meal, 9% blood meal, 9% rapeseed meal, 9% soybean meal is as good as raw fish (while being more economical, convenient and a lot less polluting) Effect of replacing fish meal with soybean meal on growth, feed utilization and carcass composition of cuneate drum (*Nibea miichthioides*)

Yan Wang ^{a,*}, Ling-Jun Kong ^a, Cui Li ^a, Dominique P. Bureau ^b

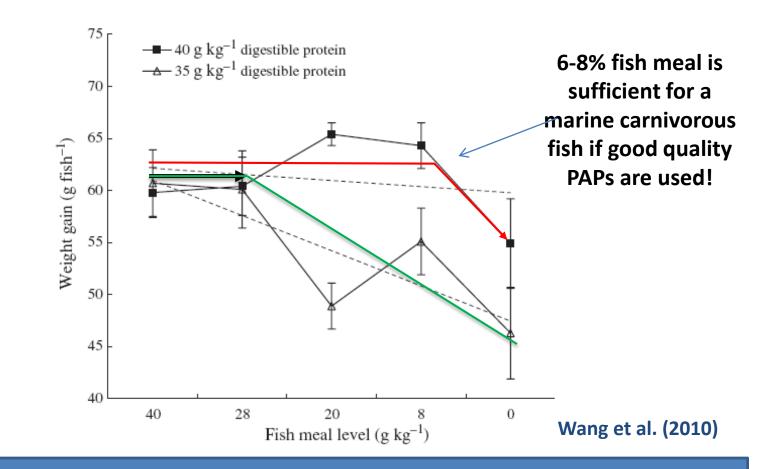
Aquaculture Nutrition

Aquaculture Nutrition 2010 16; 37-43

doi: 10.1111/j.1365-2095.2008.00638.x

The potential of land animal protein ingredients to replace fish meal in diets for cuneate drum, *Nibea miichthioides*, is affected by dietary protein level

Y. WANG^{1,2}, L. KONG², C. LI² & D.P. BUREAU³


College of Animal Sciences, Zhejiang University, Hangzhou, China;² College of Aqua-Life Science and Technology, Shanghai Fisheries University, Shanghai, China;³ Department of Animal and Poultry Science, University of Guelph, Guelph, ON, Canada

The potential of land animal protein ingredients to replace fish meal in diets for cuneate drum, *Nibea miichthioides*, is affected by dietary protein level

	Diets									
Ingredient	нс	HR1	HR2	HR3	HR4	LC	LR1	LR2	LR3	LR4
Fish meal	400	280	200	80		400	280	200	80	
Protein blend ¹		105	177	282	352		105	177	282	352
Blood meal	74	61	76	72	65	10	8	6	11	15
Soybean meal	200	230	200	216	243	180	200	200	200	200
Rapeseed meal	50	50	50	50	50	50	50	50	50	50
Wheat flour	186	180	212	210	200	240	248	252	257	263
CaHPO ₄	15	15	15	15	15	15	15	15	15	15
DL-Met	5	5	5	5	5	5	5	5	5	5
Fish oil	50	50	45	50	50	80	69	75	80	80
Vitamin premix	10	10	10	10	10	10	10	10	10	10
Mineral premix	10	10	10	10	10	10	10	10	10	10

¹ Protein blend comprises of 600 g kg⁻¹ poultry by product meal, 200 g kg⁻¹ meat and bone meal, 100 g kg⁻¹ feather meal and 100 g kg⁻¹ blood meal.

Effect of replacement of <u>a</u> fish meal by a mixture of processed animal proteins in feeds formulated to two different protein levels

At higher protein levels, essential amino acids (EAA) deficiencies occur at lower fish meal (higher alternative ingredient) levels. It is the EAA intakes that matter, not the "fish meal level" or "relative level" of essential amino acids of the diet (as % protein).

Effect of dietary ratio of fish meal to poultry by-product meal on growth, feed

utilization and waste output of Japanese sea bass (Lateolabrax japonicus)

Fei Wang^{a,b}, Yan Wang^{a*}, Wen-Xiu Ji^a, Xu-Zhou Ma^b

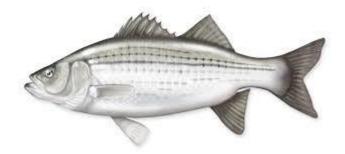


Table 2 Formulation (g kg⁻¹), proximate composition (g kg⁻¹) and energy content (MJ

kg⁻¹) of the test diets

Ingredient	С	PM1	PM2	PM3	PM4	PM5
Fish meal	400	320	240	160	80	0
Poultry by-product meal	0	97	194	291	387	482
Rapeseed meal	80	80	80	80	80	80
Soybean meal	200	200	200	200	200	199
Brewer's yeast	30	30	30	30	30	30
Starch, gel.	20	20	20	20	20	20
Wheat flour	165	153	142	132	120	112
CaHPO ₄	10	10	10	10	10	10
DL-Met	5	7	6	6	8	8
Vitamin premix	10	10	10	10	10	10
Mineral premix	10	10	10	10	10	10
Fish oil	70	63	58	52	46	40

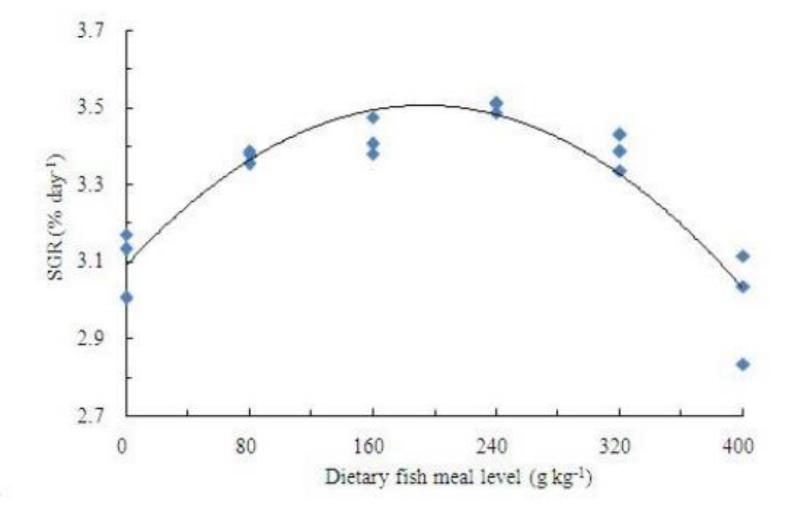

	С	PM1	PM2	PM3	PM4	PM5
Final body weight	45.7 ± 1.9 ^b	56.9 ± 0.8^{a}	60.7 ± 0.2^{a}	57.6 ± 1.0^{a}	56.4 ± 0.3^{a}	48.4 ± 1.4 ^b
Weight gain	37.1 ± 1.9 ^b	48.4 ± 0.8^{a}	52.2 ± 0.2^{a}	49.0 ± 1.0^{a}	47.9 ± 0.2^{a}	39.9 ± 1.3^{b}
Feed intake	2.80 ± 0.1^{b}	2.82 ± 0.0^{b}	2.83 ± 0.0^{b}	2.95 ± 0.0^{ab}	2.97 ± 0.0^{ab}	3.07 ± 0.0^a
Feed conversion ratio	1.15 ± 0.1^{ab}	1.07 ± 0.0^{b}	1.05 ± 0.0^{b}	1.11 ± 0.0^{ab}	1.13 ± 0.0^{ab}	1.23 ± 0.0^{a}
Nitrogen retention efficiency	$31.4\pm1.4^{\text{ab}}$	32.4 ± 0.6^a	$33.2\pm0.2^{\text{a}}$	$32.6\pm0.5^{\text{a}}$	32.1 ± 0.2^{a}	$28.7\pm0.5^{\text{b}}$
Energy retention efficiency	27.2 ± 0.7^{b}	31.4 ± 0.5^{ab}	33.2 ± 0.8^a	32.5 ± 2.1^{a}	32.2 ± 0.4^{a}	29.7 ± 0.9^{ab}

Table 4 Body weight (g fish⁻¹), weight gain (g fish⁻¹), feed intake (% d⁻¹), feed conversion ratio (feed gain⁻¹), nitrogen retention efficiency (%) and energy retention efficiency (%) of Japanese sea bass fed the test diets (Mean \pm S.E., n = 3)

Feed intake and feed conversion ratio are expressed on a dry matter basis.

S.E. < 0.05 is expressed as S.E. = 0.

Values within same row with different superscripts are statistically different at P < 0.05.

Processed animal proteins are very valuable protein ingredients for marine fish

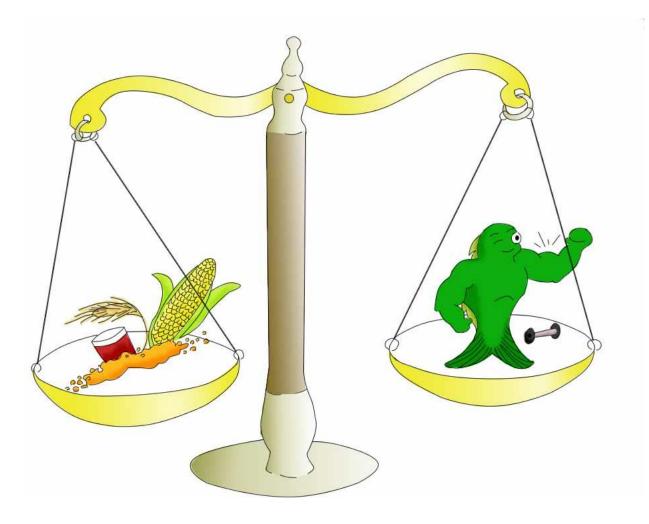
They allow the formulation of cost-effective, less polluting dry feeds

A small amount of fish meal is still required in marine fish feeds

Probably not an issue of palability but rather an issue of nutrient deficiency

Research underway to determine which nutrients are deficient in low fish meal feeds

Finding what's is missing in the feed is a bit like chasing a hidden treasure


Blood parameters Hormones Enzyme activity Protein leves Gene expression Cell assays

Mechanistic studies (i.e. digging deeper) are nice but not always essential for answering practical questions

What Does Fish Meal Bring That Plant Feed Ingredients Don't?

Components/Parameters	Fish meal	Plant Proteins
	1100 100 - 20 10000	
Essential amino acid profile	Excellent	Excellent/Poor
Digestible amino acids	Excellent/Good	Excellent/Good
LC n-3 HUFA (EPA+DHA)	Excellent	None
LC n-6 HUFA (ARA)	Good/Moderate	None
Available phosphorus	Excellent	Moderate/Poor
Digestible energy	Good	Good/Moderate
Micro-minerals	Excellent	Variable/Poor
Phospholipids	Excellent	Moderate/Poor
Cholesterol	Excellent	None
Hormones/ Bio-active compounds	Moderate/Low	Low/Moderate
Taurine	Excellent	None
Nucleotides	Excellent	Moderate/None
Soluble fibers / Oligosaccharides	Absent	Moderate/High
Insoluble fibers (cellulose, lignin)	Absent	Moderate/High
Misc. anti-nutritional factors	Low/absent	Moderate/High
Contaminants	Moderate	Low/Moderate
Phytates	None	High/Moderate
Attractants	High	Low/Moderate

Animal Nutrition = Balanced Understanding of Nutritional Requirements and Ingredient Quality

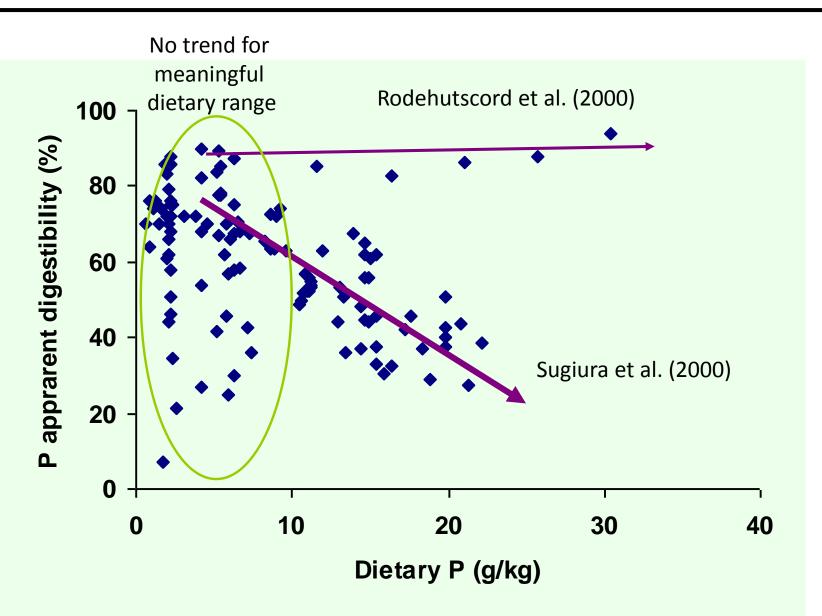
Acknowledgements

- EFPRA
- Fats and Proteins Research Foundation (FPRF)
- -National Renderers Association (NRA)
- Canadian Rendering Industry (Rothsay, Sanimax, West Coast Reduction)
- Ontario Ministry of Agriculture, Food and Rural Affairs
- Ontario Ministry of Natural Resources
- NSERC
- EVONIK Degussa
- Martin Mills

Additional Slides

Models to Estimate Digestibility of Phosphorus in Feeds for Different Species

(Hua and Bureau 2006; 2010)


FNRL

Estimates of Apparent Digestibility Coefficient (ADC) of P in Salmonids feed Ingredients

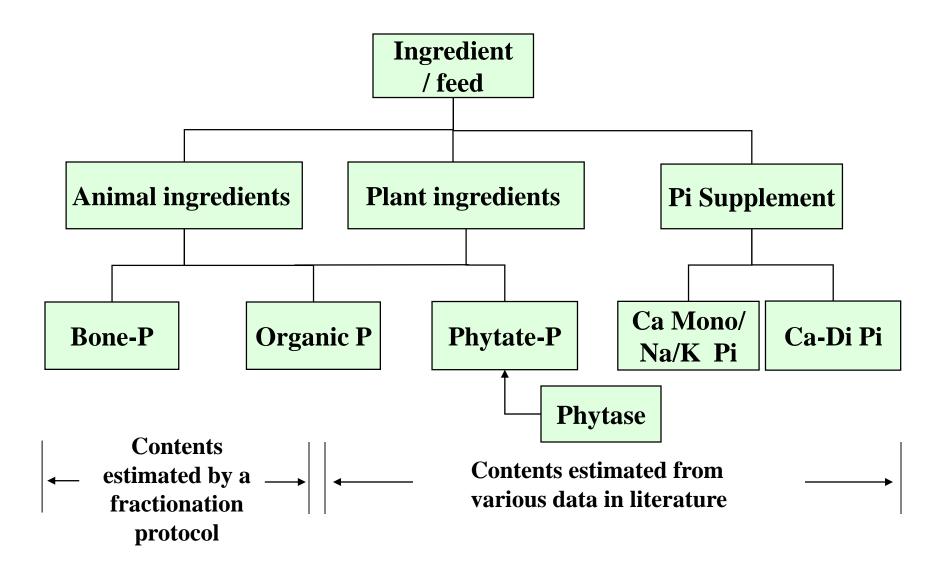
Ingredient	ADC (%)
Fish meal	17 - 81
Meat and bone meal	22 - 67
Poultry by-products meal	38 - 66
Feather meal	68 - 82
Blood meal	70 - 104
Soybean meal	27 - 46
Corn gluten meal	<10
NaH ₂ PO ₄	95 - 98
$Ca(H_2PO_4)_2$	90 - 94
CaHPO ₄	54 - 77
$Ca_{10}(OH)_2(PO4)_6 \text{ or } Ca_3(PO_4)_2$	37 - 64

Summarized from various sources in literature

Dietary Phosphorus Digestibility

137 treatments from 22 studies with rainbow trout

FNRL

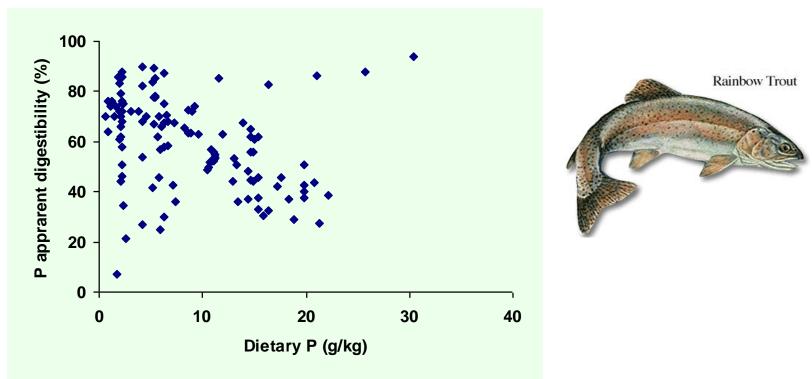

P Forms Present In Feed

- Inorganic P
 - Bone P : hydroxyapatite $Ca_{10}(OH)_2(PO_4)_6$
 - Inorganic supplement:
 - Monobasic:NaH₂PO₄, Ca(H₂PO₄)₂
 - Dibasic: CaHPO₄
- Organic P

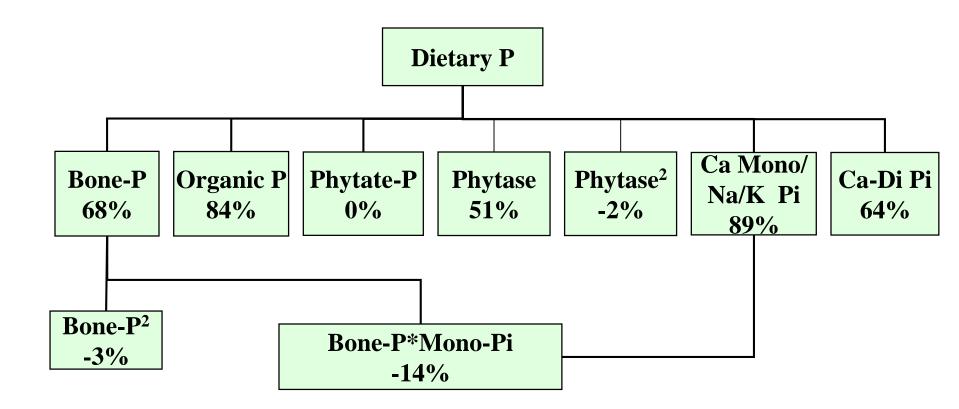
FNRI

- Phospholipid
- Phosphoprotein
- Phosphosugar
- Nucleic acid
- Phytate: primary P form in plant ingredients

Classification and Content of P Compounds


P Digestibility Model

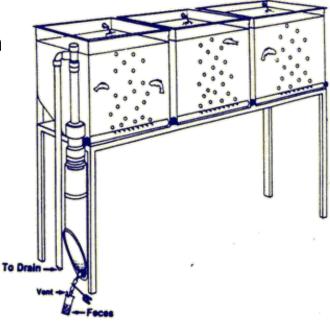
- Dataset: 137 treatments from 22 studies with rainbow trout
- Multiple Regression Approach


Digestible P content

FNRL

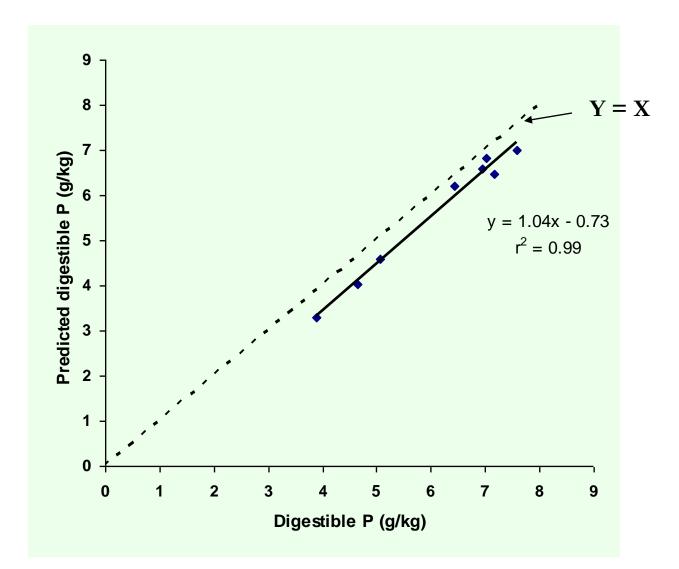
= Σ digestibility of P compounds * inclusion level of P compounds

Results: Parameter Estimates From Multiple Regression



Experimental Validation by Digestibility Trial

- Digestibility trial conducted with the Guelph system using the protocol of Cho et al. (1982)
- Reference diet:
 - Fish meal/corn gluten meal-based diet
- Test diets:


FNRI

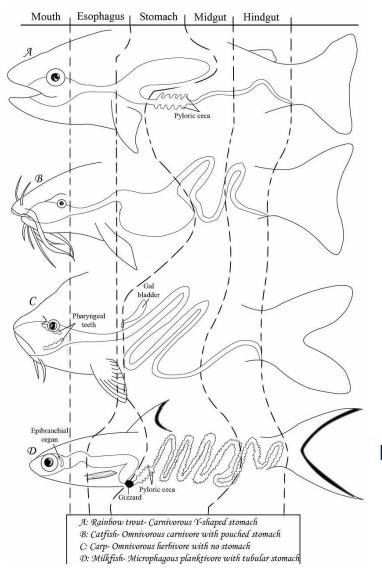
- 2 fish meals (high vs. low ash)
- 1 meat and bone meal
- 2 poultry by-products meals (high vs. low ash)
- 2 soy protein concentrates (regular vs. dephytinized)

Hua and Bureau (2006)

Results of Experimental Validation

FNRL

Top <u>fed</u> aquaculture & livestock producers – 2009


(FAO – FISHSTAT/FAOSTAT, 2011)

Values in million tonnes - Mt

Top fed aquaculture	species	Top fed livestock species					
Grass carp 4.16 Mt		Pig	106.3 Mt				
Common carp	3.22	Chicken	80.3				
Nile tilapia	<u>2.54</u>	Cattle	62.8				
Catla	atla 2.42		8.2				
Whiteleg shrimp	2.32	Turkey	5.3				
Crucian carp	2.06	Goat	5.0				
Atlantic salmon	1.44	Duck	3.8				
Roho labeo	1.22	Buffalo	3.3				
Pangasius catfish	1.19	∑ 97%	∑ 97%				
∑ 66% of total fed species	s production						
Total fed species product	ion : 31.4 Mt	Total meat production - 284 Mt					
APR 8.5% since 1980		APR 2.55% since	APR 2.55% since 1980				

Slide courtesy of Dr. A.J. Tacon

Differences between fish species in terms of mineral digestibility?

FNRL

Short GI tract

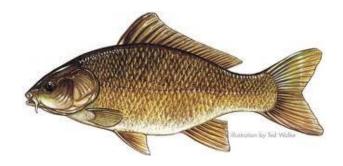
Effect of absence of true stomach?

Effect of very long and/or very acid GI tract?

Contents lists available at ScienceDirect

Aquaculture

journal homepage: www.elsevier.com/locate/aqua-online



Quantification of differences in digestibility of phosphorus among cyprinids, cichlids, and salmonids through a mathematical modelling approach

K. Hua *, D.P. Bureau

UG/OMNR Fish Nutrition Research Laboratory, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Phosphorus Digestibility Data for Tilapia

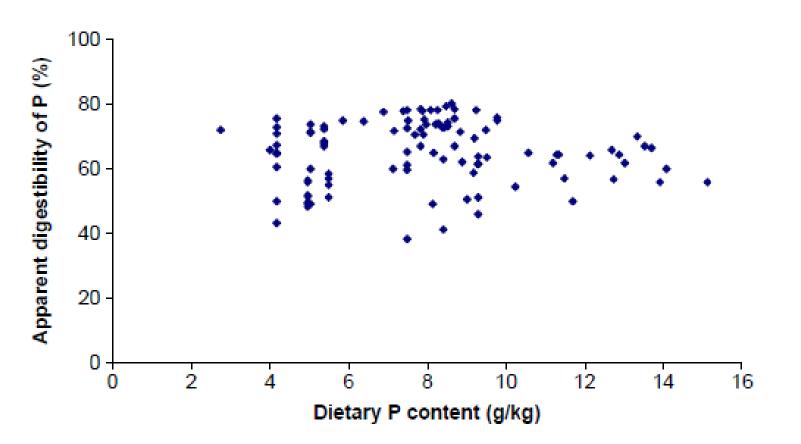


Fig. 1. Modelling data set for tilapia consisted of data from 16 studies. (Data from Kaushik et al. (1995), Furuya et al. (2001a,b,c, 2006), Portz and Liebert, 2004; Schneider et al. (2004), Bock et al. (2006), Phromkunthong and Gabaudan (2006), de Castro Silva et al. (2007), Leenhouwers et al. (2007), Liebert and Portz (2007), Agbo (2008), Madalla (2008), Phromkunthong and Udom (2008), Tudkaew et al. (2008)).

Phosphorus Digestibility Data for Carp

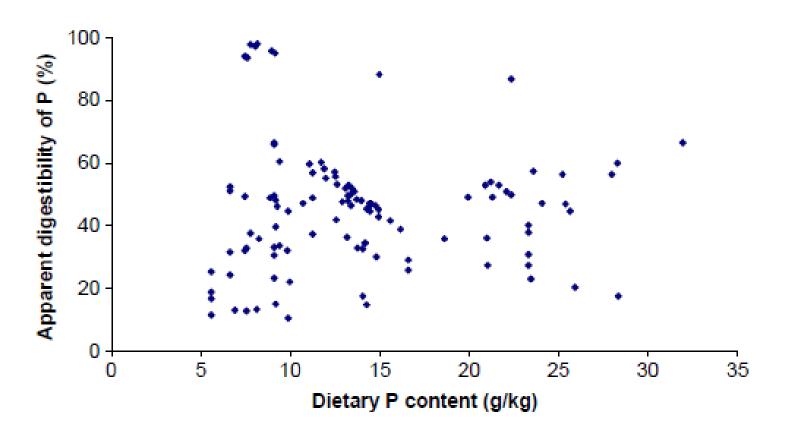
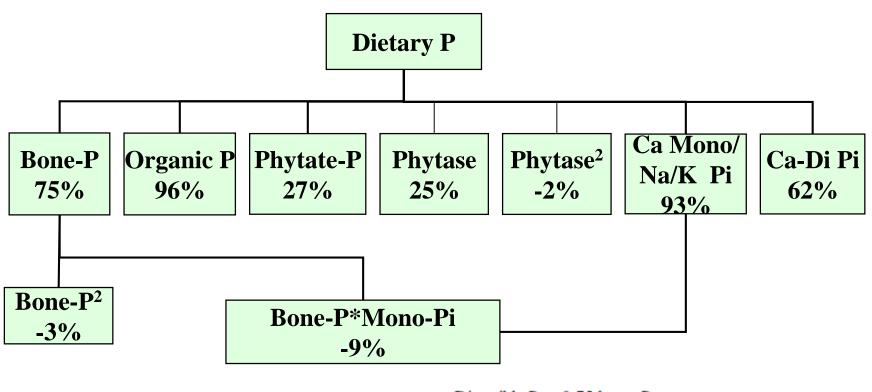
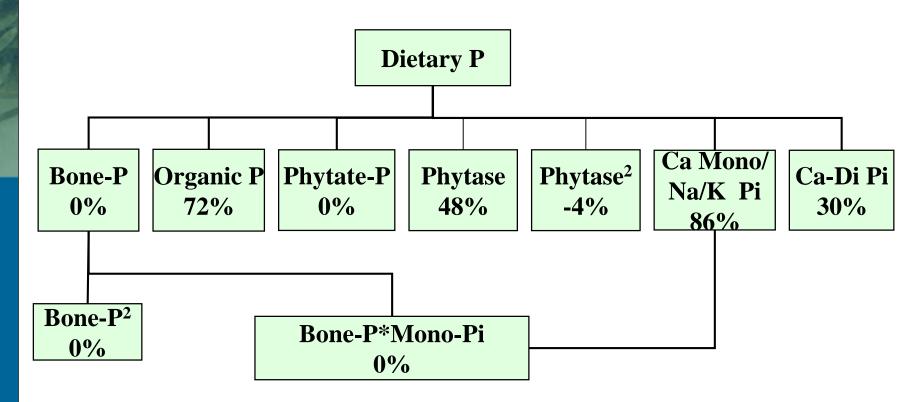



Fig. 2. Modelling data set for carp consisted of data from 22 studies. (Data from Ogino et al. (1979), Watanabe et al. (1987), Takeuchi et al. (1989), Schäfer et al. (1995), Kim et al. (1995, 1998), Satoh et al. (1997), Jahan et al. (2000, 2001, 2002a,b, 2003a,b), Yu and Wang (2000), Cai et al. (2005), Yang et al. (2005, 2006); Zhang et al. (2006), Yamamoto et al. (2007), Nwanna et al. (2007), Nwanna and Schwarz (2007, 2008)).

FNRL


P Digestibility Model for Tilapia

FNRL

- Digestible P = 0.75 bone-P
 - + 0.27 phytate-P
 - +0.95 organic P
 - +0.93 Ca monobasic /Na/ K Pi supplement
 - +0.62 Ca dibasic Pi supplement
 - +0.25 phytase/phytate
 - 0.02 (phytase/phytate)²
 - -0.03 (bone–P)²
 - 0.09 bone-P
 - × *Ca monobasic /Na/ K Pi supplement

P Digestibility Model for Common carp

Digestible P = 0 bone – P + 0 phytate – P + 0.72 organic P + 0.86 Ca monobasic /Na/ K Pi supplement + 0.30 Ca dibasic Pi supplement + 0.48 phytase/phytate – 0.04 (phytase/phytate)²

Aquaculture

Aquaculture 275 (2008) 260-265

www.elsevier.com/locate/aqua-online

Replacement of fish meal by rendered animal protein ingredients with lysine and methionine supplementation to practical diets for gibel carp, *Carassius auratus gibelio*

Menghong Hu ^a , Youji Wang ^a , Qian Wang ^a , Min Zhao ^b , Bangxi Xiong ^{a,*} , Xueqiao Qian ^b , Yujiang Zhao ^a , Zhi Luo ^a									
Ingredients	Diet	Diet	Diet	Diet	Diet	Diet	Diet	Diet	
	1	2	3	4	5	6	7	8	
Fish meal	18.00	12.00	6.00	0.00	6.00	6.00	0.00	0.00	
Poultry by-pr meal	oduct 0.00	6.00	12.00	18.00	9.00	7.00	12.00	10.00	
Meat and bor meal	ne 0.00	0.00	0.00	0.00	4.50	7.00	6.00	10.00	
Soybean mea	l 19.00	19.00	19.00	19.00	19.00	19.00	19.00	19.00	
Rapeseed me	al 23.00	23.00	23.00	23.00	23.00	23.00	23.00	23.00	
Cotton seed m	neal 8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	
Wheat flour	25.08	25.13	25.14	25.28	23.23	22.72	25.09	23.18	
Soybean oil	4.00	3.73	3.50	3.17	3.65	3.44	3.20	3.20	
Choline chlor	ride ^a 0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
Ca(H ₂ PO ₄) ₂	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	
Sodium chlor	ride 0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
Vitamin mix ¹	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	
Mineral mix 9	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
L-Lysine H ₂ S	O4 d 0.00	0.17	0.34	0.49	0.52	0.69	0.62	0.50	
MHA-Ca ^e	0.00	0.05	0.10	0.14	0.18	0.23	0.17	0.20	
Antioxidant ^f	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
Mildew inhib	itor ^g 0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	
Binder (sodiu alginate)	ım 0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
Chemical cor	nposition								
Dry matter	95.39	95.51	95.82	95.45	95.63	95.98	95.28	95.28	
Crude prot	ein 37.16	37.21	37.38	37.46	37.11	37.50	37.97	37.79	
Crude lipic	1 7.06	7.10	6.81	6.99	6.89	6.93	7.20	7.31	
Ash	9.58	9.29	10.04	8.63	10.04	10.94	9.49	10.75	
Crude fibe	r 5.37	5.42	6.07	5.85	6.07	5.91	6.52	6.31	

Digestibility of Single Ingredients

Most ingredients cannot be fed alone

Acceptance (palatability) Pelletability Nutritional quality

Test diet

70% Reference diet30% Test ingredient

Reference Diet	%
Fish meal	30
Corn gluten meal	13
Soybean meal	17
Wheat middlings	27
Vitamin premix	1
Mineral premix	1
Fish oil	10
Digestion indicator	1
	100

Equation - Digestibility

 $ADC_{ingr} = ADC_{test} + ((1-s)D_{ref}/sD_{ingr}) (ADC_{test}-ADC_{ref})$

- ADC_{ingr}= Apparent digestibility coefficient test diet
- ADC_{ref}= Apparent digestibility coefficient reference diet
- **D**_{ref}= **Nutrient content of reference diet**
- **D**_{ingr}= **Nutrient content of ingredient**

FNRL

S = Level of incorporation of ingredient in test diet (e.g. 30%)

Apparent digestibility coefficients of nutrients and energy of some ingredients – South America (2013)

		Apparent Digestibility Coefficient (%)			
Ingredient	DM	СР	Lipid	GE	Р
Poultry meal	70 ± 4	79 ±3	90 ±7	77 ±2	29 ±23
Turkey meal	76 ± 5	84 ±2	92 ±3	85 ±4	26 ± 14
Feather meal	71 ±2	69 ±5	75 ±13	67 ±2	74 ±24
Porcine meal	75 ±6	85 ±1	90 ± 8	82 ±5	30 ±6
Canola meal	74 ± 4	87 ±3	93 ±3	76 ±3	46 ± 8
Sunflower meal	61 ±5	95 ±3	-	64 ±4	35 ±6
Corn protein concentrate	74 ±3	77 ±5	70 ± 14	69 ±1	61 ±5

Performance of rainbow trout fed test diets during a digestibility trial

		Parameter			
					FE
Period	Treatment	IBW (g)	FBW (g)	TGC (%)	(gain:feed)
	Diet 1- Reference	76.5	145.6	0.340	1.40
	Diet 2- Poultry meal	81.6	158.6	0.360	1.40
	Diet 3- Turkey meal	68.4	127.6	0.316	1.45
1	Diet 4- Feather meal	74.1	142.4	0.342	1.39
1	Diet 5- Porcine meal	77.9	153.9	0.360	1.51
	Diet 6- Canola meal	73.5	139.9	0.340	1.32
	Diet 7- Sunflower meal	74.5	139.3	0.330	1.25
	Diet 8- Corn protein conc.	76.1	145.9	0.340	1.49
2	Diet 1- Reference	157.6	213.9	0.341	1.27
	Diet 2- Poultry meal	130.5	178.9	0.331	1.23
	Diet 3- Turkey meal	141.2	192.3	0.333	1.22
	Diet 4- Feather meal	154.4	206.8	0.323	1.22
	Diet 5- Porcine meal	138.8	185.1	0.306	1.22
	Diet 6- Canola meal	145.4	200.7	0.352	1.17
	Diet 7- Sunflower meal	146.2	197.5	0.326	1.17
	Diet 8- Corn protein conc.	149.7	190.1	0.259	1.09

Historical Note (circa 1995)

1970-95 : Review of literature and discussions with aquaculture feed industry personnel and researchers indicate general lack of trust in nutritive value of animal proteins for fish

Why?

FNRI

Digestibility values of certain animal products reported in the reference literature (up to 1993) were very low, making these ingredients uninteresting to use.

USA National Research Council (1993): Apparent digestibility coefficient (ADC) of protein Feather meal 58% Poultry meal 68%

Data from Cho & Slinger (1979) (U of Guelph)

Are these old Guelph reference values realistic?

Aquaculture is a <u>real</u> industry. Widely diverse and dynamic.

Aquaculture feeds represent a dynamic & growing segment of global animal feed market

Processed animal proteins are widely used (outside Europe) in commercial fish and shrimp feeds

Nutritional requirements of commercially important species are relatively well established (some work to be done)

Processed Animal Proteins Sourced from Different Rendering Plants

Feather meal	Raw material	Hydrolysis ^a	Drying	Size	
Feather meal 1	chicken and turkey feathers, hog hair	30 min, 276 kPa	disc dryer (1 h)	2.38 mm	
Feather meal 2	chicken, turkey and duck feathers	5 min, 448 kPa	disc dryer (1 h, 93°C)	2.00 mm	
Feather meal 3	chicken and turkey feathers, hog hair	40 min, 276 kPa	ring dryer	-	
Feather meal 4	chicken and turkey feathers, hog hair	40 min, 276 kPa	indirect steam (steam-tube dryer)	-	
Meat and bone meal	Raw material	Cooking ^a	System		
Meat and bone meal 1	30% pork offal, 30% beef offal, 20% shop fats and bones, 10% poultry, 10% other material	125–130°C, 20–30 min, 17–34 kPa	Carver–Greenfield fall (Stord slurry)	ing film evaporator	
Meat and bone meal 2	Same as meat and bone meal 1	Same as meat and bone meal 1	classification of final p	Same as meat and bone meal 1 but air classification of final product to reduce ash content (performed on experimental scale)	
Meat and bone meal 3	pork, beef, other (1%)	133°C, 30–40 min 54 kPa (final stage)	Dupps falling fill evap		
Meat and bone meal 4	beef (80%), pork (20%)	128°C, 20–30 min 17–34 kPa	Carver–Greenfield fall (Stord slurry)	ling film evaporator	
Meat and bone meal 5	pork, poultry, beef	132-138°C, 60 min	Stord continuous syste	m	
Meat and bone meal 6	pork, poultry, beef	127–132°C, 25 min vacuum during first stage	carver-Greenfield falling film evapora (Stord slurry)		
Poultry by-product meal	Raw material	Cooking ^a	System		
Poul tr y by-product meal 1	70% offal, 30% feet, legs and meat	138°C, 30 min	Dupps 260J Equacook		
Poultry by-product meal 2	88% chicken, 10% turkey, 2% duck and game birds	132°C, 30–40 min 54 kPa (final stage)	Dupps falling film eva	porator (Dupps slurry)	
Blood meal	Raw material	Coagulation	Drying		
Blood meal 1	Whole blood	Steam injection coagulati (2 stages) — decanter	-		
Blood meal 2	Whole blood	Steam injection coagulati decanter	ion — Ring dryer		

^aNormal atmospheric pressure = 101.3 kPa. Pressures of 17, 34, 54 kPa are the equivalent of vacuums of 25, 20 and 14 in. mercury, respectively. Pressures of 276 and 448 kPa are the equivalent of 40 and 65 psi, respectively.

Blood Meal

FNRL

	AD	С
Guelph System	Protein	Energy
Spray-dried blood meal	96-99%	92-99%
Ring-dried blood meal	85-88%	86-88%
Steam-tube dried blood meal	84%	79%
Rotoplate dried blood meal	82%	82%

Bureau et al. (1999)

Different drying equipments can greatly affect apparent digestibility

Exploring the value of a *in vitro* pH-stat digestibility assay

Collaboration with Dr. Adel El Mowafi, Shur-Gain AgResearch

FNRL

Automated Titrator

TitraLab 854 pH-Stat Titration Workstation

http://www.labsearch.ie/prod_pages/radiometer/TitraLab/ti_index.html#article1

Relationship between degree of hydrolysis (DH) with pH-Stat assay and digestibility of protein (ADC of protein) of animal proteins.

Legends: HM= herring meal, PBM= poultry by-products meal, MBM = meat and bone meal, FEM=feather meal, BM = blood meal

El Mowafi et al.

State-of-The-Art and Limitations

FNRL

Assessment of nutritional value of processed animal proteins has so far focused on apparent digestibility of proximate components (dry matter, crude protein, gross energy) and very seldom on that of specific nutrients (e.g. as essential amino acids).

Lots of research. However, in most feeding trials, the control diet is formulated with high fish meal levels (> 30%) and all essential nutrients are supplied greatly in excess of requirements. The test ingredient is included at graded levels and effect on growth performance is monitored. *The "absence of effect" of the test ingredient is the "standard"*. Yet, the "absence of effect" is highly *dependent on the composition of the diet used*.

Need to refine methodological approaches to focus on meaningfully assessing the <u>available nutrients composition of ingredients.</u>

Slope Ratio Assay

 Response of parameter of interest, e.g. protein gain, to graded levels of test ingredient is compared to that of graded levels of standard source of nutrient of interest (e.g. synthetic amino acid)

 Indicates the net effect of all components that can affect bioavailability (digestion, absorption and utilization).

UG/OMNR Fish Nutrition Research Laboratory

FNRL

Processing of the ingredient and not <u>species</u> is the main determinant of the digestibility of Processed Animal Proteins (PAPs) to aquaculture species

FNRI